Welding experiment success!

A few weeks ago, I posted to the mailing list for a Welding / Fabrication class, and we had a few people show up to try their hand in making a new addition to the shop, a custom-built shelf for our welding bench.  The old shelf is pretty sad, if you've ever had a chance to meet it. 

It's falling out of the wall
I mean, just look at the thing.  While it served its purpose without complaint for many years, it's Ikea roots definitely show through.  The shelf has perpetually had a 5° slant as long as I've known it, so it was certainly never confidence inspiring enough to do pullups on. 

We're always in a state of flux at the shop, making small improvements here and there as we see necessary.  It all adds up after a while, and people who haven't visited the shop in six months are usually stunned to see how much things have de-Seussified in the interim (in fact, that happened just now when RJ walked in, haha).  Little upgrades like this make all the difference in the world, when you were used to staring at the eyesores like this one.

Looking into the Tested videos shown on the prior posts, there is a neat video on Youtube of Jamie Hyneman's (of Mythbusters fame) workshop, specifically on the custom racks they have holding their boxes of equipment in M5 Industries.  He says, "We buy tubing by the ton".  Well, we just so happened to have a bunch of tubing scraps at the shop just begging to be put to use.  Off to Solidworks!

I quickly drew a few 3d sketches, and then used the Weldments tool to turn my sketch into a solid model.  After a grand total of maybe five minutes from concept to finished model,  then I could use to generate engineering prints, Bill of Materials, mass information like weight and volume, even simulations for deformation and drop testing if we really needed that.  While having all that strength is useful if you want it, what is most important to me is ease-of-use, and how intuitively I can learn new concepts in software.  I went through the weldments tutorial once, beyond that, this is actually my first real-life Solidworks weldments project.  

This was entirely modeled up in a virtual environment before I needed to make a single cut, so when I made a few revisions to the size of the tubes in the sketch, the rest of the model updates instantaneously (along with any other associated information, like the prints and BOM).  Not having massive experience with welding, ANSI-complete prints, nor manufacturing management, what I found this tool was most useful for, was the ability it gave me to convey the important information about this structure to my students taking the welding class.  I simply handed them a set of blueprints with a cut list, and told them "All the relevant information is on this paper." 

They delivered.  I made the first two cuts and welds, the rest was up to the new guys. 

The Noobs followed what few instructions there were, the hardest part being getting a "feel" for welding.  It's something that can't be taught out of a book, rather, it's an art that needs to be practiced.  The biggest problem we encountered was heat management, understanding what's changing in the system when you start welding, and how the molten puddle of steel needs to be manipulated through the welding process. 

Welding steel is not much different than a hot glue gun and popsicle sticks, except it's much much hotter, and it'll melt the popsicle sticks away beneath the glue. With a few basic concepts like that in mind, as long as you're considering what's happening to the heat in the weld, then your results will show a little bit of insight to the process.  Mild steel is a moderate heat conductor, it uses a mid-range heat value (between stainless and aluminum), so it's relatively simple to work with.  Stainless, while it conducts heat much less than mild steel (requiring less heat overall), also has a higher coefficient of thermal expansion, so if you don't carefully tack down your weld in several spots, a whole piece of stainless will bend and bow as you weld it along the entire length, ending up distorted and warped.  Aluminum is another beast altogether, and not recommended for beginners to fabricate with.

Tack welds holding everything together
This whole project was built from scrap and leftovers laying around the shop.  If you had to go to the metal supply store and source all of this material on your own, I'd be surprised if you'd be $20 deep into it.  The worst part of this whole project is dealing with that expanded metal grating.  While it's wonderful for filling in open areas like the tops and bottoms of this shelf, it's pretty nasty stuff to handle.  Even the "flattened" grades of expanded metal are covered in lots of tiny sharp edges that will cut the shit out of you the second you turn your attention away from it.  I have to find out these things the hard way.  That's why I order $100 of material at a time, so Benner Metals will deliver the order to me instead. Twenty foot lengths of steel aren't too easy to negotiate, let the flatbed deal with it. 

The mounts had to be reoriented 90° from my initial drawing, mostly due to my lack of considering how much space the grating was going to take up.  Since this part is being mounted to a block wall, I had to get some 3" sleeve anchors and a carbide tipped masonry bit to drill the pilot holes.  The mounts started life as a small leftover piece of rectangular tube from Flea's jeep bumper project, which I quartered into nice flanges and drilled a .400" hole through them.  Once tacked on, I laid a weld bead on the butt joint between the mount and the frame.  I could have filled it in better, but I think a weld of that size would probably exceed the design limits of this part.

Dykem is also known as layout fluid.  I use this all the time to mark parts based on a measurement, to see where I need to make my cuts or holes.  After measuring the parts using calipers, then I gently scribed the intersections of the horizontal and vertical midlines to find a rough center for the mount holes.  Dykem is easily washed away once you're done, using acetone.  In a pinch, Sharpie marker works fairly well, just remember that Sharpies are ruined once you put some oil on the tip, and you can pretty much count on these steel parts being slathered in a light coat of oil to prevent oxidation.  Acetone, you'll come to learn, will be your best friend when working with metal, except when you have even the slightest cut in your skin, which the acetone will seep into and light up any exposed nerve ending with a nice bright searing pain, not much different than squeezing lemon juice all over your broken cuticles. 

The end result - total amateurs (including myself) successfully made a beautiful, custom shelf for the shop.  It's way overbuilt (the way I like it), cheap, and user-servicable.  Want to add some hooks?  Weld them on.  Want more shelves?  Weld them on.  Speaking of hooks, remind me sometime to tell you the story about why this wall is red... 

The top crate weighs +60 lbs.  I'd say this is pretty solid.

My fourth attempt at 3G (vertical up) welds
the finished result - pullup tested. 


  1. The heavy duty MIG welder can be used for doing welding processes continuously throughout the day, so they are perfect to be used in the workshops and industries.

  2. The welding program trains students in manual, semiautomatic, and robotic welding processes used in a variety of fabrication and construction industries. check these guys out

  3. When I worked at welding West Palm Beach I loved doing experiments like this!

  4. occasionally work at high elevations. Safety procedures are important for workers to follow due to frequent exposure to hazardous conditions Welding Schools